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Abstract There is increasing recognition of the involve-

ment of the immune signaling molecule, tumor necrosis factor

(TNF), in the pathophysiology of stroke and chronic brain

dysfunction. TNF plays an important role both in modulating

synaptic function and in the pathogenesis of neuropathic pain.

Etanercept is a recombinant therapeutic that neutralizes

pathologic levels of TNF. Brain imaging has demonstrated

chronic intracerebral microglial activation and neuroinflam-

mation following stroke and other forms of acute brain injury.

Activated microglia release TNF, which mediates neurotox-

icity in the stroke penumbra. Recent observational studies

have reported rapid and sustained improvement in chronic

post-stroke neurological and cognitive dysfunction following

perispinal administration of etanercept. The biological

plausibility of these results is supported by independent evi-

dence demonstrating reduction in cognitive dysfunction,

neuropathic pain, and microglial activation following the use

of etanercept, as well as multiple studies reporting improve-

ment in stroke outcome and cognitive impairment following

therapeutic strategies designed to inhibit TNF. The causal

association between etanercept treatment and reduction in

post-stroke disability satisfy all of the Bradford Hill Criteria:

strength of the association; consistency; specificity; tempo-

rality; biological gradient; biological plausibility; coherence;

experimental evidence; and analogy. Recognition that chronic

microglial activation and pathologic TNF concentration are

targets that may be therapeutically addressed for years fol-

lowing stroke and other forms of acute brain injury provides

an exciting new direction for research and treatment.

Key Points

Accumulating evidence suggests that chronic post-

stroke intracerebral microglial activation and

neuroinflammation mediated by pathologic levels of

tumor necrosis factor constitute new therapeutic

targets that may persist for years after stroke.

Perispinal etanercept for chronic post-stroke

neurological and cognitive dysfunction is an

emerging treatment modality that may lead to rapid

and sustained clinical improvement in this patient

population.

1 Introduction

Post-stroke disability represents a major public health

problem throughout the world [1, 2]. Current drug
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treatments are grossly inadequate [1, 2]. The world stroke

research community recognizes the urgent need for

improved stroke treatments [3].

In February 2011, rapid improvement in cognition;

improvement in chronic neurological dysfunction; and

reduction in chronic, intractable post-stroke pain was noted

among a series of three patients treated off-label 13, 25,

and 36 months after stroke with a single dose of etanercept,

administered by perispinal injection [4]. Onset of clinical

response was evident within 10 min of the etanercept dose

in each patient [4]. Each patient received a second pe-

rispinal etanercept dose at 22–26 days after the first, which

was followed by additional improvement [4].

In December 2012, an observational study of 629

patients treated off-label with perispinal etanercept was

published [5]. The study included 617 consecutive patients

treated a mean of 42 months following stroke (‘the

617-patient stroke cohort’), and 12 patients following

traumatic brain injury (TBI) [5]. Statistically significant

improvements in neurological and cognitive function and

reduction in pain were noted in the stroke cohort [5]. Pe-

rispinal etanercept produced rapid improvement in a vari-

ety of chronic post-stroke neurological dysfunctions

(Table 1). The 2011 and 2012 etanercept post-stroke

studies are designated herein as ‘the etanercept stroke

studies’ [4, 5]. Perispinal etanercept for post-stroke neu-

rological dysfunction was invented and pioneered by the

senior author. Perispinal etanercept for this indication has

been explored clinically nearly exclusively by the senior

author, his colleagues, and a small group of independent

physicians who have trained in the perispinal etanercept

treatment method. The etanercept stroke studies are pre-

viously published studies of the senior author and

colleagues.

1.1 Perispinal Administration

Perispinal administration is a novel method of drug deliv-

ery. Its use to deliver etanercept for treatment of post-

stroke neurological dysfunction is necessitated by the fact

that etanercept has difficulty in traversing the blood–brain

barrier (BBB) in therapeutically effective concentration

when administered systemically, due in large part to its

high molecular weight (150,000 Da) [6]. This difficulty in

reaching the brain in therapeutic concentrations when

administered systemically is consistent with other studies

documenting limited (0.1–0.6 %) penetration of large

molecules into the brain when administered systemically

[7–9]. Perispinal administration of etanercept for treatment

of brain disorders involves needle injection overlying the

spine superficial (external) to the ligamentum flavum [4, 5,

10, 11]. Perispinal injection of etanercept is designed to

facilitate selective delivery of etanercept to the central

nervous system, as drugs administered posterior to the

spine are absorbed into the external vertebral venous

plexus (Fig. 1) [12, 13]. The external vertebral venous

plexus drains into, and is a component of, the cerebrospinal

venous system (Fig. 2) [10, 12, 14–18]. The anatomy and

physiology of the cerebrospinal venous system, a unique,

bi-directional vascular pathway, remains little known in the

general medical community, despite recognition in multi-

ple neurosurgical and anatomical publications [18–30].

Trendelenburg positioning may facilitate selective delivery

of etanercept into the brain after it reaches the cerebro-

spinal venous system [10, 31–35]. The cerebrospinal

venous system provides a direct vascular pathway to the

brain (Figs. 1, 2).

Lack of familiarity with the cerebrospinal venous

system and the novelty of etanercept’s neurological

effects may help explain the skepticism expressed by

some and provides a rationale for this article [36]. Do the

etanercept stroke studies survive a rigorous analysis with

respect to their suggestion of a causal association

between post-stroke etanercept treatment and clinical

improvement?

2 The Nine Criteria of Hill

To begin such an analysis of the etanercept stroke studies,

one may apply the well known criteria laid down by the

English epidemiologist and statistician, Sir Austin Brad-

ford Hill [37]. Hill pioneered the randomized clinical trial

and was the first to demonstrate the connection between

smoking and lung cancer. In his famous Presidential

Address to the Royal Society of Medicine, Hill presented

nine criteria for determining a causal association that

would become the well known ‘Bradford Hill Criteria’

[37]. Hill’s criteria are widely used in the evaluation of

causation, have already been applied in the field of neu-

rology, and have been recommended as a useful framework

for evaluating healthcare evidence [38–40]. Hill’s nine

criteria are as follows: strength of the association; consis-

tency; specificity; temporality; biological gradient; bio-

logical plausibility; coherence; experimental evidence; and

analogy.

2.1 Strength of the Association

The magnitude of the clinical improvements, as reflected

by the measures that were quantitated in the 617-patient

stroke cohort, including the time to walk 20 m, Montreal

Cognitive Assessment, visual analog scale for pain, etc. are

consistent with a strong clinical effect. The strength of the

association between perispinal etanercept treatment and

clinical effect is strong [5].
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2.2 Consistency

Statistically significant improvements in motor impair-

ment, sensory impairment, cognition, aphasia, pain, and

other areas of neurological dysfunction were noted, with

p values consistently less than 0.001 in the 617-patient

stroke cohort treated with perispinal etanercept [5]. The

consistency of the association in the perispinal etanercept

stroke studies between treatment and effect is high [4, 5].

Several recent studies using basic science stroke models

have documented favorable effects of tumor necrosis factor

(TNF) inhibition using TNF inhibitors other than etaner-

cept [41–44]. A single study found that etanercept

administered systemically was ineffective in an acute

stroke model, arguing for the necessity of using specialized

methods, such as perispinal delivery, to facilitate penetra-

tion of etanercept across the blood–cerebrospinal fluid

Table 1 Rapid improvement in chronic post-stroke neurological dysfunction following perispinal etanercept

Clinical effect Manifestations Reference

Statistically significant improvements

Motor function Increased strength, improved gait, stronger grip. Improvements in swallowing and

dysarthria

[4, 5]

Spasticity Decreased muscle tone, improved range of motion, decreased shoulder pain [4, 5]

Sensation Improved sensation [4, 5]

Cognition Improvements in cognitive testing scores and executive function [4, 5]

Psychological/behavioral

function

Improvements in mood, affect, and behavior. Reductions in depression and anxiety [4, 5]

Aphasia Improvements in speech and language function [4, 5]; see also

[11]

Pain Reductions in post-stroke pain, including post-stroke shoulder pain and allodynia [4, 5]

Case reports

Urinary incontinence Regained bladder sensation and control [5]

Pseudobulbar affect Reduction in excessive emotionalism [5]

Fig. 1 The vertebral veins. Reproduced from Gray and Holmes [72]

Fig. 2 The cerebrospinal venous system. Reproduced from Breschet

[70]
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barrier when treating brain disorders [7, 9, 32–35, 41, 45,

46].

2.3 Specificity

Neither of the etanercept stroke studies utilized a placebo

control group, which limits claims of specificity. However,

the clinical effects observed in the 617-patient stroke

cohort after perispinal etanercept treatment were signifi-

cant, and many of the results (such as rapid improvement in

vision, hearing, and motor function) cannot be explained

by any mechanism other than a novel treatment effect,

especially considering that patients were treated a mean of

3.5 years after their stroke [5]. The natural history of stroke

recovery is well known: the great majority of the neuro-

logical recovery occurs in the first 6 months [47–49]. The

spectrum of clinical improvement across domains, includ-

ing improvements in motor function, cognition, sensory

function, aphasia, etc., as documented in the etanercept

stroke studies (see Case 1 in the 2011 etanercept stroke

study, for example) can only be explained by the occur-

rence of a specific and novel therapeutic effect [4, 5]. The

specificity of the association in the etanercept stroke

studies between treatment and effect is high.

2.4 Temporality

The temporal relationship between the time of etanercept

administration and clinical effect is remarkably strong, since

clinical improvement characteristically was observed within

minutes of the first dose in both etanercept stroke studies [4, 5].

2.5 Biological Gradient

Hill’s biological gradient criteria are meant to examine

whether increased exposure to the agent in question is

associated with an increased biological effect. ‘‘Exposure

can be characterized in different ways such as … the

duration of exposure … average exposure … or cumulative

exposure’’ [50]. Case reports included within the etanercept

stroke studies document enhanced therapeutic responses

after additional doses of etanercept in certain patients [4,

5]. Subsequent clinical experience has confirmed additional

neurological improvement after additional etanercept doses

in multiple patients.

2.6 Biological Plausibility

Biological plausibility is included in the Hill Criteria, with

a caveat:

‘‘It will be helpful if the causation we suspect is

biologically plausible. But this is a feature I am

convinced we cannot demand. What is biologically

plausible depends upon the biological knowledge of

the day … In short, the association we observe may

be one new to science or medicine and we must not

dismiss it too light-heartedly as just too odd. As

Sherlock Holmes advised Dr. Watson, ‘when you

have eliminated the impossible, whatever remains,

however improbable, must be the truth.’’’

The evidence supporting biological plausibility is elab-

orated in detail in Sects. 2.1–2.9.5 and in Table 2. The

recent peer-reviewed report of immediate and profound

neurological and cognitive improvement following pe-

rispinal etanercept injection more than 3 years after acute

brain injury provides additional support for the plausibility

of rapid neurological improvement following perispinal

etanercept for chronic post-stroke neurological and cogni-

tive dysfunction [11].

2.7 Coherence

Reviewing the evidence discussed herein, the published

results of perispinal etanercept for post-stroke disability are

consistent with the following: (1) known involvement of

TNF in the pathophysiology of chronic brain dysfunction in

multiple diseases and disorders (review: [32]; 34, 51–62],

Table 2); (2) the role of TNF in the pathophysiology of

stroke, as discussed herein; (3) the existence of chronic,

post-stroke intracerebral glial activation and neuroinflam-

mation, as established by neuroimaging and pathological

examination, as discussed herein; and (4) the known ability

of etanercept to both rapidly neutralize pathologic TNF and

reduce glial activation (Table 2) [45, 63–67].

Additionally, the novel clinical results reported, such as

rapid improvement in vision and hearing, etc., may well be

attributed to the fact that a potent biologic therapeutic (e-

tanercept) is being administered by a novel route of

administration (perispinal). Perispinal administration is

designed to deliver etanercept into the cerebrospinal

venous system as a method to enhance transport of eta-

nercept across the blood–cerebrospinal fluid barrier [10, 16,

31, 35, 68, 69]. The unique anatomy and physiology of

these interconnected venous plexuses is supported by a

long series of experimental and pathological investigations

recognized by those in the field, particularly in the neuro-

surgical community [10, 12, 14–19, 27, 31, 35, 68–79].

2.8 Experimental Evidence

Experimental evidence, according to Hill, is where ‘‘the

strongest support for the causation hypothesis may be

revealed’’ [37]. The experimental evidence supporting the

use of perispinal etanercept for post-stroke neurological

682 T. A. Ignatowski et al.
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dysfunction is outlined in Table 2. The evidence, as

reviewed in the previous and subsequent sections herein,

can be separated into the following main categories:

2.8.1 Experimental Evidence in Multiple Models Suggests

Pathologic Tumor Necrosis Factor (TNF)

is Centrally Involved in the Pathophysiology

of Stroke

Experimental evidence implicating TNF in stroke patho-

physiology was published in 1994, and has continued

through the present [80–89]. A recent study investigated

the long-term consequences of subarachnoid hemorrhage

(SAH) on behavior, neuroinflammation, and damage to

gray and white matter in Wistar rats through day 21 post-

insult [90]. Severe SAH induced significant gray- and

white-matter damage and changes in multiple cytokines,

including increased expression of TNF at 48 h post-insult

[90]. Neuroinflammation, including microglial activation,

was ‘‘very long-lasting and still present at day 21’’ and

accompanied by changes in sensorimotor behavior [90].

2.8.2 Experimental Evidence in Multiple Models Provides

Data Demonstrating Improvement in Stroke

Outcome Through Inhibition of TNF

TNF was identified as a mediator of post-stroke focal

ischemic brain injury 2 decades ago [80–82, 89]. Specific

inhibition of TNF, using antibodies or other recombinant

TNF inhibitors, was found to reduce neurological damage

from stroke, improving stroke outcomes [80–82, 88, 89].

In 2013, inhibition of TNF using three different

molecular approaches yielded favorable results in three

separate animal models [42–44]. Researchers from Duke

summarized the scientific rationale and their results as

follows:

Intracerebral hemorrhage is a devastating stroke sub-

type characterized by a prominent neuroinflammatory

response. Antagonism of pro-inflammatory cytokines

by specific antibodies represents a compelling thera-

peutic strategy to improve neurological outcome in

patients after intracerebral hemorrhage … Post-injury

treatment with the TNF-alpha antibody CNTO5048

resulted in less neuroinflammation and improved

functional outcomes in a murine model of intracere-

bral hemorrhage …. TNF-alpha does not serve as a

simple ‘‘biomarker’’ of inflammation, but rather plays

a central role in mediating and extending neuronal

injury after insult … Monoclonal antibodies against

TNF-alpha make sense as a therapeutic strategy in

intracerebral hemorrhage due to the marked neuroin-

flammatory effects seen in this disease [43].

Increased peri-hematomal expression of TNF has been

functionally associated with neurovascular injury in multi-

ple species and experimental models of intracerebral hem-

orrhage (ICH) [91–96]. These findings are consistent with

clinical reports that found elevated cerebrospinal fluid and

plasma concentrations of TNF directly correlated with acute

hematoma enlargement, edema development, and poor

patient outcomes after ICH [97–102]. In contrast to the

early clinical success of biologic inhibitors, which directly

bind TNF as a decoy receptor, small molecule inhibitors of

TNF signaling pathways remain largely unexplored after

ICH. TNF induces biological activity via stimulation of the

TNF receptors (TNFR1 and TNFR2) [103, 104]. Post-ICH

administration of R-7050, a novel cell-permeable triazolo-

quinoxaline compound that prevents the association of

TNFR with intracellular adaptor molecules [105], reduced

vasogenic edema and improved neurological outcomes in a

mouse model of ICH [42]. These studies raise the possi-

bility that small molecule inhibitors of TNF-TNFR signal-

ing may possess therapeutic potential after ICH.

A further mechanism to not only mitigate TNF-mediated

actions and signaling after ICH but also to aid in defining

their roles is to inhibit TNF generation. The controversial

sedative, thalidomide, has immunomodulatory actions that

are mediated, in large part, by lowering the rate of TNF

synthesis [106, 107]. Recent analogs that more effectively

achieve this include 3,60-dithiothalidomide (3,60-DT) [108],

which readily enters the brain [109] and suppresses TNF

synthesis post-transcriptionally at the level of translational

regulation via the 30-untranslated region of its messenger

RNA (mRNA) [108, 110] as well as through down-regu-

lation of the eukaryotic elongation initiation factor (eIF)-

4E [111] to allow its rapid degradation.

In a mouse model of focal ischemic stroke in which brain

TNF levels were found to be rapidly elevated within both

ipsi- and contralateral brain, 3,60-DT fully ameliorated this

rise and reduced infarct volume, neuronal death, and neu-

rological deficits [112]. This neuroprotection was accom-

panied by reduced inflammation, with 3,60-DT lowering the

expression of interleukin (IL)-1Beta and inducible nitric

oxide synthase, reducing activated microglia/macrophages,

astrocyte, and neutrophil numbers, and decreasing the

expression of intercellular adhesion molecule (ICAM)-1

within ischemic brain tissue [112]. TNF plays a role in the

induction of ICAM-1 expression and also promotes BBB

leakage by inducing the expression of matrix metallopro-

teinase (MMP)-9 [113, 114], which degrades BBB tight

junction proteins [115, 116]. Mitigating the rise in TNF by

3,60-DT treatment suppressed the known TNF-induced

activation of MMP-9 [117] and, thereby, decreased stroke-

induced BBB disruption by preserving junction proteins

[112]. In support of a major role of TNF in processes

mediating stroke as well as TNF inhibition as the primary
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mechanism for the neuroprotective action of 3,60-DT, the

ability of 3,60-DT to decrease ischemic brain damage was

abolished in mice lacking TNF receptors [112].

The mechanisms underlying the detrimental effects of

TNF signaling after ICH remain poorly defined and could

provide additional therapeutic targets upon elucidation.

Emerging data suggest that TNF induces necroptosis, a

novel form of cell death with characteristic features of

apoptosis, necrosis, and type 2 autophagic death [118–

121]. In an experimental model, hemorrhagic injury

increased TNF expression and promoted necroptotic cell

death in cultured glial cells [122]. This effect was reversed

by inhibition of receptor-interacting serine/threonine-pro-

tein kinase (RIPK)-1, a multi-functional protein kinase that

interacts with TNFR to activate the pro-inflammatory

transcription factor, nuclear factor (NF)-jB [123–125]. In

line with this finding, it was observed that necrostatin-1, a

pharmacological inhibitor of RIPK [124, 125], similarly

limited neurovascular injury and improved outcomes in a

pre-clinical model of ICH [126]. This finding is also con-

sistent with reports showing necrostatin-1 is neuroprotec-

tive in experimental models of ischemic stroke and TBI

[125, 127, 128]. Taken together, these experimental results

support the assertion that TNF induces detrimental effects

after neurological injury and suggests that directed target-

ing of TNF and downstream signaling pathways may

improve patient outcomes.

Additional research involving multiple animal models of

stroke and TBI provides documentation of a favorable

therapeutic response to TNF inhibition [42–45, 60, 61, 81,

82, 86, 129]. As an example, brain TNF levels were found

to have elevated rapidly (within 1 h) following concussive

(weight drop-induced) mild TBI in mice, and were maxi-

mal at 12 h [109]. Inhibition of this TBI-induced rise by

administration of a single dose of the TNF synthesis

inhibitor 3,60-DT fully ameliorated cognitive impairments

evaluated both 7 and 30 days later; supporting both a role

for TNF in TBI-induced neuroinflammation/cognitive

impairment and its targeting for treatment [109]. Most

recently, inhibition of phosphoinositide 3-kinase delta, a

molecule that controls intracellular TNF trafficking in

macrophages, was shown to reduce TNF secretion and

neuroinflammation and confer protection in a mouse

cerebral stroke model [130].

2.8.3 Positron Emission Tomographic Brain Imaging

and Pathologic Evidence Demonstrate that Chronic

Glial Activation and Neuroinflammation May Last

for Years after Stroke and Other Forms of Acute

Brain Injury

In 1988, researchers used autoradiography to investigate

the effects of cerebral infarction induced by unilateral

middle cerebral artery occlusion in rats. The radiolabeled

ligand PK11195 that binds primarily to activated microglia

was used. Seven days after stroke, [3H]PK11195 bound

significantly in the cortical and striatal regions surrounding

the focus of cerebral infarction with smaller increases in

the ventrolateral and posterior thalamic complexes and in

the substantia nigra, all ipsilateral to the occlusion [131].

In 1991, increased [3H]PK11195 binding in the thala-

mus during the second week after experimentally induced

stroke in rats was found using ex vivo autoradiography, at a

time when [3H]PK11195 binding around the primary lesion

was beginning to subside [132].

In 2000, a multi-national European academic collabo-

ration of neurologists, neuroscientists, and nuclear medi-

cine specialists demonstrated that brain inflammation may

persist for months or years after stroke in humans [133].

The physicians and scientists investigated the potential of

positron emission tomography (PET) using [11C]PK11195

to assess the microglial reaction in secondary thalamic

lesions in patients with infarcts in the territory of the

middle cerebral artery. All patients studied were found to

have increased [11C]PK11195 binding in the ipsilateral

thalamus, indicating microglial activation in projection

areas remote from the primary lesion [133]. The only

patient studied more than 7 months after stroke was a

50-year-old patient with a primary stroke involving the left

temporo-parietal region, and he demonstrated bilateral

thalamic microglial activation 24 months after stroke

[133].

In 2004, an international collaboration of neuroscientists

found pathological evidence of a long-term intracerebral

inflammatory response after TBI in a series of patients who

had sustained blunt head injury. They described microglial

hyperplasia and hypertrophy with major histocompatibility

complex (MHC) class II upregulation, and inflammatory

changes up to 16 years after the injury [134].

In 2005, Gerhard et al. [135], in another international

collaboration of academic scientists and physicians, studied

a series of patients between 3 and 150 days after onset of

ischemic stroke in order to measure the time course of

microglial activation. Utilizing (R)-[11C]-PK11195 PET,

they found that brain inflammation was long-lasting after

stroke, with (R)-[11C]-PK11195 binding involving both the

area of the primary lesion and areas distant from the pri-

mary lesion site [135]. They described the spread of the

glial response beyond the ischemic core as closely resem-

bling the progression of microglial activation in animal

experiments, with ‘‘early recruitment of microglia in the

ischemic border zone and later involvement of the neo-

cortex and thalamus’’ [135].

In 2006, Price et al. [136], in a multi-center academic

collaboration, used (R)-[11C]-PK11195 imaging to study a

series of patients after stroke. Using this imaging
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methodology, they documented persistent neuroinflamma-

tion in the stroke penumbra and elsewhere in the brain in

patients following stroke, and recognized that this neuro-

inflammatory response might represent a therapeutic

opportunity that extends beyond time windows tradition-

ally reserved for neuroprotection [136].

In 2011, Folkersma et al. [137], studied microglial

activation in patients with moderate and severe TBI

using (R)-[11C]-PK11195 brain PET, 6 months after

trauma. In both whole-brain and regional analysis,

increased (R)-[11C]-PK11195 binding potential was

found compared with age- and sex-matched healthy

controls. From these series, increased (R)-[11C]-

PK11195 binding potential was found not only in the

ipsilateral but also in the contralateral hemisphere,

indicating prolonged and widespread microglia activa-

tion after TBI.

Subsequent studies, using either PET imaging or path-

ologic examination, have confirmed the existence of

chronic intracerebral glial activation that has been docu-

mented to last for 17 years after even a single acute brain

injury [138, 139].

Microglial imaging using (R)-[11C]-PK11195 brain

PET can be of meaningful clinical and diagnostic value

in terms of visualization and quantification of active

neuroinflammatory and neurodegenerative disease pro-

cesses and in elucidation of the long-term effects of

neuroinflammatory sequelae and its implications for

neurological outcome [137]. Taken together, along with

additional research showing that pathologic TNF medi-

ates neurotoxicity in the ischemic penumbra, these data

suggest that chronic microglial activation and neuroin-

flammation may be a common pathological response to

stroke and other forms of acute brain injury [86,

133–140].

There is a need to understand the long-term relation-

ship between late microgliosis and TNF. Although the

PET data discussed in this section do not describe TNF

actions or changes, PET imaging before and after thera-

peutic intervention with TNF inhibitors that can quantify

and describe patterns of microglial activation promises to

be a fertile area for future investigation. As suggested by

Price et al. [136], the accumulating evidence indicates

that chronic glial activation after acute brain injury rep-

resents a therapeutic target that persists far longer than

the time windows traditionally reserved for neuroprotec-

tion. This evidence provides a scientific basis for con-

sidering pharmacologic therapeutic intervention that

targets chronic glial activation months or years after

stroke, and supports the plausibility of achieving a ther-

apeutic response in patients with chronic post-stroke

neurological dysfunction by targeting pathologic TNF

concentration [86, 133–139].

2.8.4 Experimental Evidence Implicates TNF

in the Neurotoxicity Produced by Glial Activation

in the Stroke Penumbra

In an in vitro model of microglial activation and propa-

gated neuron killing in the stroke penumbra, TNF inhibi-

tion using a soluble TNF receptor reduced neurotoxicity

[86]. In addition, experimental data suggest that TNF

functions as a gliotransmitter that is involved in the

mechanisms whereby glia modulate synaptic transmission

and neuronal network function [141–155].

2.8.5 Etanercept is Both a Potent TNF Inhibitor

and an Inhibitor of Microglial Activation

The plausibility of beneficial effects of etanercept for

treatment of chronic post-stroke neurological dysfunction

is supported by the fact that, in addition to its known role as

a potent biologic inhibitor of TNF, etanercept has also been

shown to be capable of reducing glial activation in multiple

experimental models [45, 64–67]. The known physiologi-

cal effects of etanercept on TNF and glial activation make

it a well matched candidate to address the chronic glial

activation and pathologic TNF that may be a long-lasting

consequence of stroke [45, 64–67, 86, 133, 135, 136].

2.9 Analogy

Review of the medical literature provides evidence sup-

porting the plausibility of the results of the etanercept

stroke studies by analogy, as discussed below.

2.9.1 Etanercept and Other Biologic TNF Inhibitors

Reduce Neuropathic Pain

Statistically significant improvements in pain, including

improvements in hyperesthesia, allodynia, pain associated

with spasticity, post-stroke shoulder pain, and neuropathic

pain were reported in the 617-patient stroke cohort [5].

These results are supported by a long series of experiments

documenting the effects of etanercept and other biologic

TNF inhibitors in experimental models and in the clinic.

In 1998 and thereafter, Sommer and colleagues [156–

158], in a series of basic science experiments, demon-

strated the central involvement of TNF in the pathophysi-

ology of neuropathic pain and the favorable effects of anti-

TNF antibody treatment in these models. In 1999, a sepa-

rate group of investigators [159] showed that neuropathic

pain was mediated by brain-derived TNF. Subsequent

studies provided further supportive evidence [159–165]. In

2001, etanercept was shown to reduce hyperalgesia in

experimental painful neuropathy [166]. In 2003 and 2004,

the first human evidence of the effectiveness of etanercept
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for treating neurological spinal pain was published [167–

170]. Many of these early studies were performed by the

authors and their colleagues. Subsequently, four random-

ized controlled clinical trials have provided favorable data

supporting the efficacy of etanercept for neurological

spinal pain, and TNF inhibition is emerging as a treatment

strategy for intractable sciatica and other forms of inter-

vertebral disc-related pain [171–176]. The accumulated

evidence is substantial [65, 156–175, 177–179]. This evi-

dence, taken together, suggests by analogy the plausibility

of pain improvement following etanercept in patients with

chronic post-stroke pain.

2.9.2 TNF is Centrally Involved in the Pathophysiology

of Chronic Brain Dysfunction in Multiple Disease

States

Statistically significant reduction in cognitive impairment

is reported in the 617-patient stroke cohort following pe-

rispinal etanercept treatment [5]. The data included

improvement in a standardized instrument, the Montreal

Cognitive Assessment, with p-values less than 0.0001

immediately post-treatment and 1 and 3 weeks later [5].

The cognitive improvement documented in the etanercept

stroke studies is supported, by analogy, by substantial

scientific evidence that suggests that TNF is centrally

involved in the pathophysiology of chronic brain

dysfunction.

Beginning in the 1980s, and continuing into the present,

TNF has been implicated in the pathophysiology of mul-

tiple diseases and disorders associated with chronic brain

dysfunction, including cerebral malaria [32, 51, 56, 180–

185]; TBI [45, 52, 60, 61, 129, 186, 187]; Alzheimer’s

disease [32, 34, 53, 55, 59, 149, 188–203], frontotemporal

dementia [54]; primary progressive aphasia [62, 204];

sarcoidosis [205]; rheumatoid arthritis [206]; surgery-

induced cognitive decline [57]; and a wide variety of

additional diseases and disorders [32, 58, 67, 207]. For

example, an increasing body of evidence supports a major

role for central neuroinflammatory mechanisms in the

pathogenesis of hepatic encephalopathy, a neuropsychiatric

complication of both acute and chronic liver failure. Mi-

croglial activation in liver failure has been attributed to the

accumulation of lactate in the brain, and focal accumula-

tion of brain lactate is a common feature of stroke, TBI,

and status epilepticus, conditions that are known to result

in significant neuroinflammation [67, 208]. Neuroinflam-

mation characterized by microglial activation and

increased expression of pro-inflammatory cytokines in the

brain has been reported in both human and experimental

liver failure of diverse etiology, including viral hepatitis

[208] and biliary cirrhosis [209], as well as in acute liver

failure resulting from toxic [210] or ischemic [211] liver

injuries. Microglial activation and increased pro-inflam-

matory cytokine expression are significantly correlated

with the grade of encephalopathy in these disorders.

Moreover, slowing of hepatic encephalopathy progression

has been demonstrated following inhibition of microglial

activation by hypothermia [211] or minocycline [212] and

following the use of anti-TNF strategies such as etanercept

[213]. TNFR gene deletion delays the progression of

hepatic encephalopathy in mice with acute liver failure

resulting from toxic liver injury [210].

2.9.3 Infusion of Recombinant Human TNF Produced

Focal Neurological Dysfunction in Early Human

Studies, Supporting a Role of Excess TNF

in the Pathogenesis of Such Disorders

Additionally, it is notable that among the 69 patients who

participated in the early phase I studies of prolonged (24-h

or 5-day) intravenous infusions of recombinant human

TNF, three developed transient focal neurological symp-

toms. One patient developed diplopia, lethargy, and

expressive dysphasia after receiving recombinant TNF at

2.0 9 105 U/m2/d for 2 days, with return to baseline neu-

rologic status within 48 h without sequelae [214]. The

second study, involving a 24-h infusion of human recom-

binant TNF documented two cases of neurological toxicity,

as follows:

Two elderly patients had transient episodes of focal

neurological deficits. One patient had an isolated loss

of recent memory, while the other had transient

expressive aphasia. No abnormalities were noted

upon computerized tomography brain scan or cere-

brospinal fluid analysis. In each case, the symptoms

occurred near the completion of treatment and

resolved without sequelae within 6 h. These two

toxic events occurred at doses of 182 and 327 lg/m2

and did not represent dose-limiting toxicity [215].

These early cases of focal neurological toxicity fol-

lowing TNF infusion provide further scientific support for

the involvement of excess TNF in the pathophysiology of

post-stroke neurological dysfunction and the perispinal e-

tanercept results.

2.9.4 Specific Evidence Suggests that Etanercept

has the Potential to Reduce Cognitive Impairment

in Multiple Disorders Associated with Chronic Brain

Dysfunction

Etanercept has demonstrated favorable effects in neuroin-

flammatory disorders, both in the clinic and in multiple

experimental models [4, 5, 10, 35, 45, 58, 60, 61, 64–69,

146, 166–173, 177–179, 204, 207, 216–221].
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TNF levels in the cerebrospinal fluid 25 times higher

than in controls have been found in patients with Alzhei-

mer’s disease [222]. In patients with mild cognitive

impairment (MCI) followed prospectively, ‘‘only MCI

patients who progressed to Alzheimer’s disease at follow

up, showed significantly higher CSF levels of TNF-alpha

than controls … Indicating that CNS inflammation is a

early hallmark in the pathogenesis of AD’’ [223]. A later

study from these investigators supported this conclusion

regarding the role of TNF in Alzheimer’s disease patho-

genesis [224].

In 2006, the clinical results of a prospective, single-

center, open-label, pilot clinical trial of perispinal etaner-

cept for Alzheimer’s disease was reported by the senior

author and colleagues [216]. The authors included two

neurologists, a rheumatologist, and an internist, and the

study included 15 patients treated with perispinal etaner-

cept weekly over a period of 6 months [216]. The main

outcome measures included three standard instruments for

measuring cognition: the Mini-Mental State Examination

(MMSE), the Alzheimer’s Disease Assessment Scale-

Cognitive subscale (ADAS-Cog), and the Severe Impair-

ment Battery (SIB). There was significant improvement

with treatment, as measured by all of the primary efficacy

variables, through 6 months: MMSE increased by

2.13 ± 2.23 (p \ 0.003), ADAS-Cog improved

(decreased) by 5.48 ± 5.08 (p \ 0.006), and SIB increased

by 16.6 ± 14.52 (p \ 0.04).

In 2008, rapid cognitive improvement in a patient with

Alzheimer’s disease following treatment with perispinal

etanercept was reported by the senior author and a neu-

rologist [218]. Sue Griffin, co-editor of the Journal of

Neuroinflammation, reported her independent observations

after witnessing rapid clinical improvement in additional

patients with Alzheimer’s disease following treatment with

perispinal etanercept [217]. Subsequent publications by the

senior author and colleagues documented cognitive

improvement in patients with Alzheimer’s disease and

other forms of dementia following treatment with perispi-

nal etanercept [10, 68, 69, 146, 204, 219].

In a basic science study conducted by the senior

author and Stanford scientists and published in 2009,

perispinal administration of radiolabeled etanercept fol-

lowed by head-down positioning was discovered to

deliver radiolabeled etanercept into the choroid plexus

and cerebrospinal fluid within the cerebral ventricles

within minutes of injection, as visualized by PET scan

[31].

In 2010, Chio et al. [45] studied etanercept in an

experimental model of TBI. They found that etanercept

caused attenuation of TBI-induced cerebral ischemia,

reduction of motor and cognitive function deficits, and

reduction of microglial activation [45].

Chen et al. [206] studied the effects of anti-TNF treat-

ment on cognition in 15 patients with rheumatoid arthritis

over a period of 6 months with subcutaneous anti-TNF

treatment: eight received etanercept 25 mg twice weekly

and seven received adalimumab 40 mg twice monthly.

Cognitive function determined by MMSE scores was sig-

nificantly improved in the patient cohort [206].

Elfferich et al. [205] studied 343 sarcoidosis patients

over a period of 6 months, with all patients completing the

Cognitive Failure Questionnaire (CFQ) at baseline and at

6 months [206]. Patients were separated into three groups:

(1) no immunomodulating drugs; (2) prednisone with or

without methotrexate; and (3) anti-TNF drugs. Only

patients receiving anti-TNF drugs demonstrated a signifi-

cant improvement in CFQ score [205].

Chou et al. [225] presented the results of their review of

medical and pharmacy claims data from January 2000 to

November 2007 for a commercially insured cohort of 8.5

million adults throughout the USA. They derived a sub-

cohort of 42,193 patients with a pre-existing diagnosis of

rheumatoid arthritis. In this population of adults with

rheumatoid arthritis, they found a 55 % decreased inci-

dence in Alzheimer’s in those patients treated with TNF

inhibitors, but not with other disease-modifying agents

used for treatment of rheumatoid arthritis [225]. When they

further analyzed the risk according to the individual anti-

TNF agent used, they found that only etanercept was sig-

nificantly (p = 0.024) associated with reduced risk [226].

In 2011, Shi et al. [195, 196] reported cognitive

improvement in a woman with Alzheimer’s disease fol-

lowing intrathecal administration of infliximab, a chimeric

TNF monoclonal antibody, following the favorable results

of the use of infliximab in an experimental Alzheimer’s

model [195, 196].

In 2012, Gabbita et al. [227] found that early interven-

tion with a small molecule inhibitor of TNF prevented

cognitive deficits and improved the ratio of resting to

reactive microglia in the hippocampus in a murine triple

transgenic model of Alzheimer’s disease. Belarbi et al.

[228] found that a TNF protein synthesis inhibitor restored

neuronal function and reversed cognitive deficits induced

by chronic neuroinflammation. McNaull et al. [197, 229]

and Butchart and Holmes [197, 229] discussed the rationale

for TNF inhibition as a treatment approach for Alzheimer’s

disease in their review articles [197, 229].

Bassi and De Filippi [207] reported verbal, cognitive,

and behavioral improvement in a patient with long-stand-

ing neurological dysfunction, in whom etanercept was used

for treatment of psoriasis. The beneficial effect on cogni-

tion and social interaction was a surprising side effect of

etanercept used to treat the cutaneous psoriasis [207].

In 2013, Cheong et al. [197, 229] studied etanercept in

an experimental model of TBI. They found that
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neurological and motor deficits, cerebral contusion, and

increased brain TNF-alpha contents caused by TBI were

attenuated by etanercept [60].

In 2014, Detrait et al. [197, 229] reported favorable

effects of etanercept administered systemically in a basic

science Alzheimer’s model [230]. However, the only dose

that was effective across all measures of efficacy was the

highest dose, 30 mg/kg given every 2 days (for a total dose

of 90 mg/kg given during the first week). This 90-mg/kg

weekly dose is more than 100 times the normal human

etanercept dose. Etanercept doses of 3 mg/kg every 2 days,

about 15 times the usual human dose, were not effective.

The lack of efficacy of systemically administered etaner-

cept in this Alzheimer’s disease model at doses closer to

the usual human therapeutic dose is consistent with a

previous Alzheimer’s disease clinical trial in which eta-

nercept administered systemically at a dose of 25 mg twice

weekly was not found to be effective [231].

The totality of this evidence suggests, by analogy, the

plausibility of cognitive improvement following perispinal

administration of etanercept in patients with chronic post-

stroke cognitive impairment.

2.9.5 Independent Eye-Witness Observations

Finally, rapid neurological improvement following pe-

rispinal etanercept has been witnessed first-hand by inde-

pendent third parties, including several of the authors of

this commentary as well as others [11, 35, 216, 217, 232].

A new report has documented that a single dose of pe-

rispinal etanercept produced an immediate, profound, and

sustained improvement in expressive aphasia, speech

apraxia, cognitive dysfunction, and left hemiparesis in a

patient with chronic, intractable, debilitating neurological

dysfunction present for more than 3 years after acute brain

injury [11]. Replication of experimental results with vali-

dation by different observers is a time-honored cardinal

scientific principle supporting the reliability of a scientific

observation [39].

3 Conclusion

In summary, perispinal etanercept for post-stroke neuro-

logical and cognitive dysfunction satisfies all of Hill’s nine

criteria: strength of the association; consistency; specific-

ity; temporality; biological gradient; biological plausibility;

coherence; experimental evidence; and analogy.

The Oxford Centre for Evidence-Based Medicine

(OCEBM) is widely regarded as an authority in the

development of evidence-ranking schemes in medicine

[233]. OCEBM documents ‘‘a growing recognition that

observational studies—even case-series and anecdotes can

sometimes provide definitive evidence’’ and allows for

‘‘observational studies with dramatic effects to be ‘upgra-

ded’’’ with respect to level of evidence. The current evi-

dence hierarchy standard promulgated by the OCEBM

ranks observational studies that demonstrate dramatic

effects as level 2 evidence [233]. The etanercept stroke

studies, each of which documents dramatic clinical

improvement following perispinal etanercept administra-

tion, therefore provide level 2 evidence of the effectiveness

of perispinal etanercept for post-stroke neurological dys-

function [233–236]. The weight of the evidence calls for

the initiation and funding of the exceedingly costly, large-

scale, randomized controlled trials necessary to obtain US

FDA approval of perispinal etanercept for these indica-

tions. The cost of clinical trials for brain disorders can

exceed $US1 billion [237]. Until such trials are completed,

the elaborated evidence and unmet medical need provide

an ethical mandate that together support this off-label

treatment approach [33, 40, 238–246]. With the additional

weight of recent basic science studies reporting favorable

effects of etanercept in a diverse group of brain disorders,

and scientists from several independent academic centers

reporting favorable effects of TNF inhibition in other

stroke models, now is the time to seriously consider sys-

tematic testing of perispinal etanercept for brain injury,

especially in stroke. Clinical trials should be directed at

early and late post-stroke interventions that can validate the

drug for potential future use.

4 Future Directions

On the 40th anniversary of the journal Stroke, leading

stroke researchers met to devise and prioritize new ways of

accelerating progress in reducing the risks, effects, and

consequences of stroke [3]. Their consensus recommen-

dations regarding stroke research included the following

[3]:

‘‘[T]here is clearly a need to ‘‘do things differently’’

if there is to be a major advance in the development

of new interventions … We need to scan the scientific

landscape to embrace new ideas and approaches …
Be alert to new models of disease that may vertically

integrate basic, clinical, and epidemiological disci-

plines. For example, could advances in the under-

standing of infectious disease or inflammation

dramatically change our thinking about stroke path-

ogenesis?’’ [3]

Scientific communities do not easily embrace new ideas,

despite the calls of its leaders to do so [3, 36, 247–252]. As

Wolinsky has stated, ‘‘the advancement of scientific

knowledge is an uphill struggle against ‘accepted
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wisdom’’’ [36]. Recognition that chronic microglial acti-

vation, synaptic plasticity, and pathologic TNF concentra-

tion are therapeutic targets that may be therapeutically

addressed for years following stroke and other forms of

acute brain injury provides an exciting new direction for

research and treatment.
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