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Tumor necrosis factor (TNF) is an ancient and widespread cytokine required in small amounts for much physiological function.
Higher concentrations are central to innate immunity, but if unchecked this cytokine orchestrates much chronic and acute disease,
both infectious and noninfectious. While being a major proinflammatory cytokine, it also controls homeostasis and plasticity in
physiological circumstances. For the last decade or so these principles have been shown to apply to the central nervous system
as well as the rest of the body. Nevertheless, whereas this approach has been a major success in treating noncerebral disease, its
investigation and potential widespread adoption in chronic neurological conditions has inexplicably stalled since the first open trial
almost a decade ago.While neuroscience is closely involvedwith this approach, clinical neurology appears to be reticent in engaging
with what it offers patients. Unfortunately, the basic biology of TNF and its relevance to disease is largely outside the traditions of
neurology. The purpose of this review is to facilitate lowering communication barriers between the traditional anatomically based
medical specialties through recognition of shared disease mechanisms and thus advance the prospects of a large group of patients
with neurodegenerative conditions for whom at present little can be done.

1. Introduction

Nearly forty years ago the term TNF appeared in the liter-
ature. First, to set a common source of confusion to rest,
we note that the synonym TNF𝛼, still often seen, was an
innovation that has been obsolete for some years. In 1975 the
name TNF was given to a novel function of a semipurified
peptide detected in the serum of mice receiving parenteral
bacterial lipopolysaccharide (LPS) several weeks after they
had been infected with Bacillus Calmette-Guérin (BCG),
an attenuated strain of Mycobacterium bovis. On transfer
to mice bearing transplanted sarcomas a purified form of
this peptide caused necrosis of these tumors equally well as
did LPS, but it was devoid of detectable LPS [1, 2]. Though
named for this tumor-killing activity, in the event the peptide
TNF proved to be as pleiotropic as any cytokine, being very
widely distributed across biology, important in physiology,
and in excess incriminated in innate immunity and disease
pathogenesis.More recently its activities have been realized to

include the chronic neuroinflammatory disease states seen in
survivors of traumatic brain injury (TBI) and stroke, condi-
tions that impose great personal, social, andmonetary burden
on individual families and society. In other words, both the
infectious and noninfectious diseases seen in hospitals every
day comprise the visible end of the spectrum of the biology
of this cytokine.

TNF neutralization by biological therapy (i.e., by in vitro
biologically generated specific anti-TNF agents) has become
an enormous success story in a number of chronic inflamma-
tory diseases outside the brain but curiously has not yet been
taken seriously enough by the relevant medical specialists for
its possible widespread adoption to be objectively examined
for the chronic neuroinflammatory disease states. A 2010
editorial marking the 40th anniversary of the journal Stroke
laments the dearth of advances leading to new targets for
poststroke therapy, treatment ideas for which have stagnated
[3]. Its theme is to urge the field to break down its silo
mentality and embrace new ideas and approaches from other
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disciplines and diseases. Neutralizing excess cerebral TNF is
a good example. Although clinical neurologists are aware of
the concept, they largely retain, in the absence of first-hand
experience or observation, what they apparently believe is
healthy skepticism towards it. As we shall see, this could well
arise from insufficient basic knowledge of cytokine biology.
In contrast, many neuroscientists, with the advantage of
wider basic knowledge of cytokine function, including its
roles in homeostasis and plasticity, are on record as having
independently observed the effects of neutralizing excess
TNF in chronic neuroinflammatory diseases in patients [4–
6] and noted its plausible clinical application. The aim of
this review is to provide sufficiently broad knowledge of
TNF biology for presently skeptical neurologists to engage
with this approach and thus make informed decisions about
trialing and treating these diseases in ways that parallel
well-established treatments for important chronic systemic
inflammatory illnesses.

2. TNF in Biology, including
Brain Development, Physiology,
and Neuroplasticity

The capacity to make the peptide TNF appeared extremely
early in biological evolution and has been scrupulously
retained. The essential elements of the TNF molecule that
confer function evidently have varied little, in that cells from
a number ofAcropora spp., the genus to which themajor reef-
builders such as staghorn corals belong, carry receptors that
recognize human TNF [7]. These authors also showed that
a form of TNF made by Acropora spp. recognizes the TNF
receptors on a well-known human cell line and is implicated
in coral pathology. Hence TNF, essentially as we know it now,
predates bilateral symmetry. Not surprisingly, therefore, this
peptide is involved in physiology [8] and disease [9, 10] of
more complex creatures such as fish, and in physiology and
disease in as many birds and mammals as the availability of
specific reagent has allowed to be tested.

As predictable from this ubiquity, TNF is one of the
cytokines that have many essential roles in normal tissues,
often involving homeostasis and functional plasticity. Argu-
ments for this general principle applying to the brain [11]
as well as the rest of the body grew from seminal 1994
observations that physiological levels of TNF are necessary
for normal neuron function, with a loss or gain of TNF being
pathological [12]. Examples abound. TNF excess has been
demonstrated to be instrumental in sciatic nerve crush, as
demonstrated by enhanced axon regeneration after treatment
with etanercept [13]. TNF and at least two other members
of the TNF superfamily of cytokines [14, 15] mediate neurite
outgrowth. Regarding normal fetal development of nocicep-
tion, TNF signalling controls neurite growth, survivability,
excitability, and cell differentiationmediated by nerve growth
factor [16]. TNF mediates postinjury, hypothermia-induced,
neurite outgrowth [17], as well as the loss of cortical dendritic
spine density, plus associated memory loss, in a mouse
model of congestive heart failure [18]. Its biological influence
spans generations, with a requirement for adequate maternal

TNF to induce, in milk, the chemokines needed for normal
hippocampal development and memory in offspring [19].
TNF is released during physiological neuronal activity and
plays a crucial role in regulating the strength of normal
synaptic transmission [20]. It is also involved in normal
neurotransmission via modulating excitatory inputs [21],
trafficking of AMPA receptors [22], homeostatic synaptic
scaling [23, 24], and long-term potentiation [25], and it
maintains normal background levels of neurogenesis [26–
28]. Mitochondrial function depends on TNF [29], as does
regulation of the neurotransmitter, orexin [30], which, as
recently reviewed [31], controls sleep, motor control, focused
effort, appetite, andwater intake. TNF also regulates neuronal
type-1 inositol trisphosphate receptors (IP3R), which are
central to neuronal Ca++ homeostasis, and thus the ionic
signaling cascades on which normal function of these cells
depends [32]. Clearly, all these functions are vulnerable to
TNF being outside its physiological range, as outlined in the
next section. Moreover, such normal regulatory changes do
not indicate inflammatory activity but are part of normal
physiology. As will be noted, this has important practical
implications.

3. TNF in the Biology of Both Infectious and
Noninfectious Diseases

Awareness of the capacity of excess TNF to cause disease
arose from parallels between our work on BCG, LPS, and
malaria [33, 34] and earlier work of the discoverers of
TNF [1], who worked in a tumor context. This led to
a collaboration that generated the then novel, but now
widespread, argument that enhanced TNF generation is
central to innate immunity, whereas its excessive production
triggersmajor infectious disease [35, 36]. Definitive evidence,
made possible by the advent of cloning technology, arose in
1985 through the availability of specific TNF reagents [37].
Accordingly, as reviewed in [38], prior exposure to a passive
antibody specific to TNF prevented illness in LPS-treated
mice [39]. In due course excess TNF was also appreciated
to be central to initiating inflammation as well as harmfully
altering homeostasis of the normal physiology outlined in the
previous paragraph. Information on all of these functional
roles of TNF has continued to expand exponentially. As has
been reviewed [40], the logic of the pathogenesis of certain
infectious diseases being driven by TNF now encompasses
essentially all such conditions [41–47].Nowadays, as has often
been reviewed, chronic sterile inflammatory states, such as
rheumatoid arthritis (RA), psoriasis, Crohn’s disease, late
onsetAlzheimer’s disease (AD), andParkinson’s disease (PD),
as well as the syndromes that follow survival from stroke and
TBI, are also widely discussed in these terms.

4. Specific Anti-TNF Agents as Therapy against
Noncerebral Disease

4.1. Inflammatory Disease That Resolves If Not Acutely Fatal.
In the late 1980s, when enough rTNF had become available
to see if it killed tumors in a clinical setting, the first firm
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indication of it being central to acute illness arose. But as
predicted in the wider literature (above), it generated side
effects that mimicked the onset of severe sepsis [48]. Yet
while prior anti-TNF antibody prevented the illness caused
by injecting LPS to induce experimental sepsis, it was of
no help when administered to mice that had already been
made sick by LPS [39]. This gave fair warning that such
antibody was likely to be impractical for treating acute
inflammatory disease once it is underway, and so it proved
when etanercept, a major commercial anti-TNF biological
agent, was first tested in sepsis patients [49]. This simply
reflects the rapid kinetics of TNF release and clearance,
which, in acute resolving diseases, often occurs before serious
illness is apparent [50]. The antipathogen function of TNF
[35], together with the large dose employed by present-day
standards, plausibly explains outcomes being worse than
controls in some sepsis groups [49].

Nevertheless certain acute iatrogenic states that mimic
sepsis can be treated preemptively. As reviewed [40], a
number of them have been confirmed to arise from excess
production of TNFby appreciating that they can be prevented
by prior use of specific anti-TNF agents. These include the
Jarisch-Herxheimer reaction [51, 52], adverse reactions to
OKT3 therapy [53, 54], and acute graft-versus-host disease
[55–57]. Such conditions are not common, and preemptive
avoidance of acute illness does not match dramatic cures for
making headlines, but this preventative concept is accepted
as logical within the wider clinical and TNF research com-
munities.

4.2. Nonresolving Inflammatory Disease Approved for Treat-
ment by Anti-TNF Agents. The challenge of disease states in
which inflammation does not resolve is complex [58], but
chronic conditions, in which production of proinflammatory
cytokines persists, provide the opportunity for specific TNF
agents to be useful therapy. RA was the first nonresolving
inflammatory disease to be treated in this way, and the
outcome, which opened many eyes, was pivotal in changing
opinion on the usefulness of these agents. Crucially, a group
working on RA reasoned that TNF was more important
mediator than IL-1, since in vitro anti-TNF antibody reduced
IL-1 as well as TNF [59, 60]. This prediction of anti-TNF
superiority in this context was later fulfilled [61].The implica-
tions of this for treating RA [62] led to a successful open trial
with infliximab, the first of the commercial specific anti-TNF
agents, being published a few years later [63].With exemplary
collaboration from the pharmaceutical company providing
the drug and funding, a randomized double-blind trial that
scaled up the 1993 open trial, retaining its route, dose, and
timing, was published the following year [64] and led to the
first registration of an anti-TNF agent for a human disease.
Despite requiring fine tuning, this approach to treating RA
still dominates the field and continues to change the face of
this disease, as predicted 20 years ago [65]. Subsequently the
use of specific anti-TNF agents became the optimal treatment
for two other nonresolving inflammatory states, psoriasis
[66] and Crohn’s disease [67]. Hence 15 years ago three
medical specialties involving three anatomically disparate
sites, joints, skin, and gut lining, had become involved in the

same treatment approach through acknowledging a shared
fundamental disease mechanism.

As we have reviewed [68], the dual activity of TNF as
a component of innate immunity and disease pathogenesis
has made it inevitable that certain infections, particularly
tuberculosis, have a tendency to be exacerbated during
long-term anti-TNF therapy. The very extensive regular use
of this treatment in a number of inflammatory diseases,
particularly RA, demonstrates that this challenge can be
managed successfully. It becomes much less of a concern
when treatment is administered only once or twice, such as
poststroke, as discussed below [69], compared to biweekly for
RA.

5. Specific Anti-TNF Agents as Therapy against
Central Nervous System Disease

As noted earlier, neuroscience knows the cytokine TNF
through copious literature on its central roles in much
normal brain physiology and, when in excess, chronic brain
disease states in which function and behavior are altered
[70, 71]. As reviewed [68, 72–76], within the past 10 years
most aspects of the physiology and disease literature of the
brain have felt its influence. This includes the spinal pain
of sciatica, with a number of observational and controlled
studies having employed etanercept to good therapeutic effect
[77–81]. It might, therefore, have been reasonable to expect
that treatment of conditions such as acquired brain injury
by neutralizing excess TNF production would by now have
followed due process and added another organ system to
what is already a very successful strategy in the treatment
of inflammatory disease at joints, skin, and gut. We need to
examine why this has not happened. A conservative “silo”
mentality, criticized within clinical neurology [3], is one
possibility. Indeed, adoption of thrombolysis very soon after
stroke onset, and now the present poststroke mainstay, was
very vigorously opposed 20 years ago [82].

In large part, an explanation for this delay may lie in
cerebral diseases being technically more difficult to treat
because the specific anti-TNF agents currently in use, such
as infliximab, etanercept, and adalimumab, are too large
to pass through the blood-brain barrier in any meaningful
amount after subcutaneous or intravenous administra-
tion except in massive experimental doses [83, 84].
Approaches under development to overcome this include
TNF-specific nanobodies [85] small enough to pass the
blood-brain barrier (BBB) (http://www.pharmatimes.com/
article/12-06-26/Ablynx plans to partner RA drug lifted
by immunogenicity data.aspx), a “Trojan Horse” trans-
BBB transport method [86, 87], and a third approach, the
perispinal route, consisting of injecting etanercept into the
cerebrospinal venous system, known also as Batson’s plexus
[88], followed by a head-down tilt for 5 minutes [89–91].
Perispinal administration is done on the argument that it
allows, through reverse flow, rapid entry of large molecules
into the CSF through the veins that usually drain this
fluid [92, 93]. As proposed [69], the pattern, rapidity, and
distribution of clinical responses best fit with rapid delivery of
etanercept via retrograde distribution into the choroid plexus



4 Neural Plasticity

via the cerebrospinal venous system. Developing this last
approach simply involved understanding the implications of
the relevant anatomy [92–94] and considering it in the light
of earlier aviation medicine research [95] on head-down
tilting causing albumin and globulin, two etanercept-sized
molecules in the plasma, to enter the CSF in appreciable
amounts within five minutes.

The nanobody and Trojan Horse approaches have not
yet generated human data, but the perispinal approach has
done so, albeit only in open trial [89] and observational study
[69, 96–98], spanning from 2006 to the present. Remarkably,
no trial funding for the perispinal approach has yet been
forthcoming, so random controlled trials for etanercept have
been limited to subcutaneous injection [99, 100], clearly
inadequate for a molecule this size to reach the CSF, therefore
not surprisingly yielding negative results. This is despite
far more documentation than was deemed sufficient, over
20 years ago, to trigger the first human therapeutic use of
these agents—RA treatment with infliximab—to progress
from open trial [63] to random double-blind trial [64]
status within a year. The poststroke reports [69, 97, 98],
consistent with extensive animal data [83, 84], have recently
received favorable independent review [101]. In the absence,
to date, of pharmaceutical company enthusiasm for random
double-blind trials, individual patient pretreatment states
have continued to act as recent historical controls [69].
This is in fact an ideal comparison, since the likelihood of
rapid spontaneous return of function is remote so long after
stroke events [102]. Wide variation in onset-to-treatment
times, as well as phenotypical heterogeneity, is also overcome
by using pretreatment controls. Moreover, it has recently
been proposed that the degree of heterogeneity encountered
in certain neurological diseases questions whether random
blind trials are the best guide for individualized treatment
decisions [103].These authors argue in favor of observational
studies alongside, complementing randomly controlled trials
when groups are heterogeneous.

6. Considering Diseases by
Common Pathophysiology rather
than Anatomical Focus

The principle of encouraging rational therapy by grouping
diseases under their pathophysiology rather than immediate
cause or anatomical location was thoughtfully expanded in
2010, again from the perspective of the wide relevance of
specific anti-TNF agents as rational therapy [104]. These
authors pointed out that what they term as immune-driven
inflammatory diseases (IMIDs) cover a wide range ofmedical
specialities. They noted that classifying diseases by their
pathophysiology would therefore better reflect emerging
knowledge in disease mechanisms and more readily allow
translation of new therapeutic concepts between anatomy-
based specialist groupings. They also noted the advantage of
using therapies that have been tested at length for safety and
potential side effects on many people, in this case specific
anti-TNF agents treating RA [64], making these agents of
practical use in otherwise refractory diseases with high

human and financial costs. The examples of specific anti-
TNF agents being used in refractory sarcoidosis, refractory
Behcet’s disease, and refractory uveitis are referenced and
discussed at length. These authors point to the usefulness
of this reasoning in terms of responsibility to patients with
conditions in which, for reasons such as phenotypic diversity,
scarcity, or short life expectancy, recruitment into random
controlled trials is impractical and off-label treatment war-
ranted.

7. The Narrow Vision of the Traditional
Anatomical Focus of Medical Specialties

Unfortunately, the current division of medicine into anatom-
ically focused clinical specialties does not always help the
above logic gaining a firm foothold. Arguably, this arises
because some disease specialists schooled and experienced
within a particular narrow, albeit deep, knowledge base rarely
rub shoulders with those with expertise in cytokine biology,
a key to understanding much disease pathogenesis across
the board. The cytokine-disease link has now become a
formidable body of information compared to its earlier size,
when, for example, rheumatologist needed to assimilate this
literature, so the challenge is now correspondingly larger,
though not impossibly so, for new entrants such as neurol-
ogists. In contrast, cytokine scientists working on disease
mechanisms need to cross anatomical boundaries in order to
remain competitive and for decades have necessarily ignored
conventional specialty barriers in their reading. Hence they
are, in general, better equipped to accept the rationale of
specific anti-TNF therapy for neuroinflammatory disease
more readily and, having observed its effects here, advocate
its further development [4–6].

Perhaps this relative lack of exposure to the broad
cytokine literature is a large part of why this treatment
concept has to date been dismissed by the clinical neurology
community, despite not having observed its short- or long-
term effects, as essentially impossible or dangerous [105, 106].
This may have contributed to a roadblock that noncerebral
diseases, for which anti-TNF is established treatment, did
not encounter a medical specialty, on which pharmaceutical
companies depend for expert opinion on whether a certain
random controlled trial is warranted, having, through refusal
to observe, no informed opinion to offer. Importantly, this
refusal, all the while protesting that the story cannot be
taken seriously until random trials have been done, at present
may, in part, be instrumental in deterring pharmaceutical
company from funding these very trials. In such a climate,
off-label treatment inevitably flourishes [104].

The point has been well made [3] that since inspiration
can come from unexpected quarters, responsibility for
the unmet needs of stroke patients can be said to require
willingness to read the wider literature, as well as dispas-
sionate first-hand consideration of any promising new
approach from outside the expected medical specialty. The
urgent need for this advice has recently been illustrated by a
referenced, but unrefereed, website (http://www.sciencebas-
edmedicine.org/enbrel-for-stroke-and-alzheimers/) written
by a clinical neurologist, recently being used to further
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the argument, in reference 33 of an American Academy of
Neurology publication [100], that the concept of neutralizing
excess TNF in a neurodegenerative condition is controversial.
A key point argued on this site is that this single therapy
could not plausibly treat several brain disease states
(http://www.sciencebasedmedicine.org/enbrel-for-stroke-
and-alzheimers/), since each has a different mechanism and
so requires a different treatment. Current broad knowledge
base of cytokine biology in disease would have allowed the
neurologist author to appreciate that anti-TNF agents, already
accepted as a logical treatment for RA, psoriasis, Crohn’s
disease, Jarisch-Herxheimer reaction, adverse reactions
to OKT3 therapy, and acute graft-versus-host disease (see
references in [40]), ankylosing spondyloarthritis and undif-
ferentiated spondyloarthritis [107], sarcoidosis, uveitis, and
Behcet’s disease (see references in [104]), are also regarded, in
the literature, as a logical approach to treating certain brain
diseases, including disabilities consequent to traumatic brain
injury, stroke, and other cerebral ischemic events. Other
brain conditions in development for treatment with the same
specific anti-TNF agents include the cognitive defects seen
after surgery [108], after irradiation [109], after chemotherapy
[110], and in sarcoidosis [111] and RA [112]. This breadth
of literature dramatically demonstrates the wide spectra of
disease in which the proinflammatory cytokines, such as
TNF, which can also act as a homeostatic neurotransmitter in
its own right [113], are implicated. The following list provides
an overview of examples of specific anti-TNF biologicals in
various stages of development or in use for treating disease:

Systemic disease:

rheumatoid arthritis [63, 64],
psoriasis [66, 114, 115],
Crohn’s disease [116],
spondyloarthritis [117],
Jarisch-Herxheimer’s disease [35, 51],
graft-versus-host disease [56, 118],
reaction to OKT-3 [53, 54].

Chronic CNS disease:

pain [77–79, 81, 113, 119–123],
Alzheimer’s disease [89, 124],
Parkinson’s disease [125],
Huntington disease [126],
post-LPS cognition [127],
postoperative cognition [108],
postirradiation cognition [109],
postchemotherapy cognition [110],
rheumatoid arthritis cognition [112],
sarcoidosis cognition [111],
poststroke therapy [69, 87, 97, 98],
traumatic brain injury [69, 83].

Moreover, a serious student of cytokine biology would
never regard specific anti-TNF agents simply as immuno-
suppressives (see above website), as if they were ibuprofen or

aspirin. TNF in excess can be a proinflammatory cytokine
but, as summarized earlier, it has many other activities
that are as much a part of normal physiology as those of
insulin and like it can become pathophysiological through
loss of homeostasis [128]. In the same vein, excess TNF
has many harmful actions unrelated to inflammation,
such as the rapid inhibition of pain responses in the
CNS by infliximab [113]. This study clearly differentiates
between anti-TNF neutralizing the rapid direct effects of
excess TNF and more slowly neutralizing inflammation
once it has been set in train. Not having yet acquired
this basic knowledge of cytokine biology presumably has
influenced the main pharmaceutical company that markets
etanercept to persist in its posted belief that the claimed
rapidity of response [96] is biologically improbable because
it is too fast for an inflammatory response to resolve
(http://www.amgen.com/media/rapid cognitive improvement
.html). This posting, still current at the time of writing, also
ignores a number of confirmatory reports of a rapid response
[4–6, 69, 97, 98, 129] since the initial text that noted it [96].

Other criticisms on the quoted (reference 33 of [100])
website critical of the perispinal approach, such as doubting
a rationale for the reported improvement a range of years
after the initiating event, can be addressed by engaging with
neuroscientists, who can point to the extreme chronicity
of cytokine excess that makes this plausible in stroke [130]
and TBI [131, 132] survivors. Certainly, clinical neurology
would have moved more in this direction if five years ago it
had taken heed of key recommendation of the 53-authored
Stroke editorial [3] that urges the field to be alert to new
models of disease that may vertically integrate basic, clinical,
and epidemiological disciplines. For example, could advances
in the understanding of infectious diseases or inflammation
dramatically change our thinking about stroke pathogenesis?

Clearly, understanding advances in infectious diseases
and inflammation would take neurologists directly into the
world of basic TNF biology and thence how the corrupting
effects of its excessive poststroke production in the brain
would lead to neurodegenerative disease. This points them
to a treatment based on a logical, testable hypothesis, one
amply demonstrated for some years in open trials and ripe for
formal testing with etanercept. As summarized in this review,
its prospects are far better than any other treatment, extant or
proposed.
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